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The liquid-vapor interface of a confined fluid at the condensation phase tran- 
sition is studied in a combined hydrostatic/mean-field limit of classical statistical 
mechanics. Rigorous and numerical results are presented. The limit accounts 
for strongly repulsive short-range forces in terms of local thermodynamics. 
Weak attractive longer-range ones, like gravitational or van tier Waals forces, 
contribute a self-consistent mean potential. Although the limit is fluctuation- 
free, the interface is not a sharp Gibbs interface, but its structure is resolved 
over the range of the attractive potential. For a fluid of hard balls with ~ - r  - 6  

interactions the traditional condensation phase transition with critical point 
is exhibited in the grand ensemble: A vapor state coexists with a liquid state. 
Both states are quasiuniform well inside the container, but wall-induced 
inhomogeneities show up close to the boundary of the container. The condensa- 
tion phase transition of the grand ensemble bridges a region of negative total 
compressibility in the canonical ensemble which contains canonically stable 
proper liquid-vapor interface solutions. Embedded in this region is a new, 
strictly canonical phase transition between a quasiuniform vapor state and a 
small droplet with extended vapor atmosphere. This canonical transition, in 
turn, bridges a region of negative total specific heat in the microcanonical 
ensemble. That  region contains subcooled vapor states as well as superheated 
very small droplets which are microcanonically stable. 

KEY W O R D S :  Liquid-vapor interface; continuum limit; van der Waals 
theory; rigorous results; numerical results. 

1. INTRODUCTION 

The three-dimensional liquid-vapor interface poses one of the outstanding 
problems in the statistical mechanics of the classical phase transition; see 
ref. 1 for a review of the field. A satisfactory theory should be based on a 
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microscopic Hamiltonian and deduce observable structures using tools of 
statistical mechanics. However, in an infinitely extended field-free 3D 
system, we expect an interface to be definable only on time scales which are 
(i) sufficiently long to justify the assumption of thermodynamic equilibrium 
locally and (ii) sufficiently short as compared to the time scale of typical 
large-scale fluctuationsJ ~'2~ The standard Gibbs formalism in the thermo- 
dynamic bulk limit ~3) represents time averages over sufficiently long times 
that an ergodic system has visited essentially all distinct typical macrocon- 
figurations, so that any local interface structure will be averaged out. Even 
if one conceives of a mathematical device that allows one to discriminate 
between the two time scales just alluded to, in general the resulting snap- 
shot interface may be a topological monster and far from easy to analyze. 

Instead of inquiring into the time scales, we will here concentrate on 
a different approach, which is a variation on the mean-field theme basic to 
the work of van der Waals ~4J and successors. The basic idea is to assume 
that the short-range repulsive part of the intermolecular potential V creates 
particle correlations on a much shorter length scale than the longer-range 
but weak attractive part of F. Under favorable conditions very many 
particles live on the correlation scale imposed by the attractive part of V. 
If this is the case, one expects that macroscopically locally there appears a 
fluid with an equation of state to which only the repulsive part of the pair 
interactions contributes. The attractive tail interactions manifest themselves 
in the form of a mean-field force, generated by the local fluid density. 
Van der Waals (who had not realized the underlying mean-field assump- 
tion in his theory; see the editorial in ref. 4) at first restricted the fluid to 
be uniform in space and found his celebrated equation of state which 
produced the unstable negative compressibility loop. J. Thomson had 
speculated about its existence. Being an artifact in a bulk theory, this was 
later improved on thermodynamically by Maxwell's ~s~ equal-area con- 
struction, yielding a not unreasonable theory of the bulk thermodynamic 
functions, and by Ornstein, ~61 who obtained all this and also the phase 
fractions at a condensation phase transition. The asymptotic character of 
the van der Waals-Maxwell-Ornstein theory was established in the rigorous 
works of Kac 17) and Kac et  al. ~8~ for one-dimensional systems, and of 
Lebowitz and Penrose ~9) for arbitrary-dimensional systems; see ref. 10 for a 
review. The spatial distribution of the liquid and vapor phases was 
addressed by PercusIH) and by van Kampen, ~2~ who focused on the concept 
of a self-consistent nonuniform mean-field approximation to the problem. 
They derived a nonlinear equation for the approximate one-particle density 
in all space and showed it has planar interface solutions. ~'1~'12) 

These nonuniform extensions of the vdWMO theory, as far as we 
know, have not been subject to rigorous treatment and the status of the 
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approximations involved not clarified. In particular, some ambiguities have 
shown up in the discussion of interface fluctuations. 11'13'14) In the present 
work we rigorously construct a hydrostatic/mean-field limit for nonuniform 
systems in which the continuum equation of refs. 11 and 12 is restricted to 
a bounded domain A c R 3 and becomes an exact equations for the one- 
particle density. This gives us sufficient control of the problem to construct 
three-dimensional nonplanar interface solutions and discuss their stability. 
The limit plays the role of a "law or large numbers." We hope to address 
a "central limit theorem" in a subsequent work. This should clarify the 
above-mentioned ambiguities at the level of the equilibrium interface 
fluctuations. 

Although for the sake of generality we will include it in the con- 
struction of the limit, an external gravitational field will no t  be n e e d e d  to 
enforce a stable interface. Therefore our results should be of interest for 
so-called microgravity experiments. Stable interfaces exist when the total 
amount of matter in the container is fixed such that there is not enough 
material to fill the container completely with the liquid state, and too much 
material to fill it entirely with vapor. Without an ordering external field 
the interface structure then is determined by the competition between the 
mean field forces due to V A and the "stiff" local thermodynamic pressure 
gradients of the reference fluid, due to VR. It is also weakly influenced by 
the shape of the container A. Physically, the presence of the container in 
some sense "freezes in" one particular kind of interface geometry among 
the multitude of possibilities which would only be locally realized as 
transient phenomena in a fluctuating thermodynamic (bulk) limit system. 
Mathematically it provides the compactification of the function space so 
that the continuum/mean-field equation does have nonplanar finite inter- 
face solutions in 3D. 

With Kac ~v~ we write 

V(x,  y )  = VR(X -- y )  + VA(X -- y )  (1.1) 

for the pair potential, with x, y ~ R 3. Here VR is a repulsive core and VA 
an attractive tail part. We treat the two parts differently when the number 
of particles N--.  oo. In particular, to resolve the finite thickness of an inter- 
face, we keep the range of VA fixed, unlike Kac, and pass over to a finite- 
volume cousin df the Kac-Uhlenbeck-Hemmer-Lebowitz-Penrose  limit, in 
which infinitely many particles live on the range of VA. This requires multi- 
plying VA by a scaling factor which goes to zero with N ~  oo, in such a 
way that the contribution to the energy per particle due to VA is basically 
fixed along the limit sequence. Simultaneously VR has to be scaled to zero 
in such a way that the contribution to the energy per particle due to VR 



1340 Kiessling and Percus 

is basically fixed along the limit sequence, too. This procedure results in 
what is properly termed a combined hydrostatic/mean-field limit. We stress 
that it is different from a pure mean-field limit insofar as correlations due 
to V R contribute to the local thermodynamics. To prove existence of this 
limit for the thermodynamic and the correlation functions requires a number 
of modifications of the Lebowitz-Penrose technique, besides rescaling into 
a finite volume, because the one-particle density is now nonuniform. Our 
limit is conceptually related to other limits of nonuniform mean-field type, 
for which the local density structure is that of an ideal gas. These have been 
studied for classical systems with bounded 1~5-~71 and logarithmically 
singular interactions, ~8'~91 and for quantum systems with Coulomb and 
Newton interactions and various statistics. (2~ Our approach, though 
yet classical, goes beyond these limits insofar as our system is locally not 
the ideal gas, but a fluid of particles with a nonintegrable repulsive core 
interaction. 

We take 
K 

VR(X-- y)= Y', a~ kl IX-- Yl-k (1.2) 
k = 4  

with K>~4, and coupling constants a~l>~0 (strict inequality holds for 
k=K). The form (1.2) covers many cases of interest and is chosen for 
convenience, but we could be more general and merely require V R to be 
positive, diverging at the origin, and tempered at infinity, i.e., V(Ixl)~< 
C Ix1-3-~. for Ixl large. 123) We shall make explicit use of (1.2) in Sections 3 
and 4 to obtain easy estimates, but with only minor additional effort, these 
can be generalized. The typical case for V A which we have in mind is, e.g., 

VA(X -- y) = --aA(IX -- yl 2 + ro) -x'/2 (1.3) 

Here, r o is a small "typical interaction radius" and aa  > 0 is a coupling 
constant. For a model of particles with short-range interactions, we 
have K > K ' > 3 .  Of primary interest is the case K =  12, a ~ = 0  for k<K, 
and K ' =  6. This is a slight modification of the Lennard-Jones potential. 
By setting K ' =  1 and K~>4, we obtain a model of a gravitating system of 
particles with repulsive cores; taking K--* oo gives hard spheres with attrac- 
tive interactions. More generally, we take for VA a nonpositive, weak 
attractive interaction, such that - V a ( x - y )  is the kernel of a positive- 
definite bilinear form on some appropriate function space. Moreover, V h is 
required to be continuous and bounded from below by VA(0). This covers 
many physically important interactions, but is quite restrictive from a 
mathematical point of view. We need the restrictions because we want to 
apply Laplace's method in function space. 
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To keep the paper of reasonable size, the limit will be rigorously 
constructed only in the grand canonical ensemble. For the microcanonical 
and the (petit) canonical ensembles we confine ourselves to a nonrigorous 
presentation. Numerical evaluations will be given for the grand and the 
petit canonical ensembles. We stress that in our finite-volume limit the 
ensembles are generally n o t  thermodynamically equivalent3161 Although 
the interactions are short range, the finite-volume corrections to the bulk 
limit fall into two categories: (1) boundary layer effects at the container wall; 
(2) interface effects inside the container. The effects of category 1 are simple 
and as expected. However, category 2 contains some highly nontrivial 
effects. They include a new structural phase transition in the petit canonical 
ensemble. It is embedded in a region of negative total compressibility which 
is bridged in the grand canonical ensemble by the (classical) condensation 
phase transition. The reader should not find him or herself balking at the 
negative total compressibility. This is not defined just as the integral over 
the local compressibility, which is positive. The total compressibility is the 
difference of two positive terms and compares states of different amount of 
matter and/or volume. Transitions between such states are impossible in 
the petit and the microensembles, which explains why a structure with 
negative total compressibility can be (conditionally) stable. We point out 
that our negative compressibility loops have a very different origin than the 
famous van der Waals loop. 

We approach the limit in three steps. The first is simple and consists 
in rescaling the bulk limit for a uniform system into a finite domain, given 
in Section 2. The particles have repulsive pair interactions (1.2). This 
defines the local thermodynamics of what is commonly termed the reference 
system. In Section 3 we construct a limit of the grand potential which yields 
the reference system in a nonuniform external field. In Section 4 we establish 
the continuum limit for a nonuniform system with all interactions present. 
The limiting grand potential is given by the global minimum of a grand 
potential functional on the space of one-particle densities. It will be shown 
that those solutions of the nonlinear Euler-Lagrange equation which 
globally minimize this functional are limiting one-particle densities of the 
grand ensemble. In Section 5 we present the corresponding formulas for the 
petit and the microcanonical ensembles, without proof. 

We then go over to applications. Section 6 deals with a system of hard 
balls with attraetive interactions (1.3) which is confined by a spherical 
container. We discuss first the relevant details of the local thermodynamics 
which is provided for by the hard-balls system without attractive inter- 
actions. We then address the complete system of hard balls with attractive 
interactions and prove uniqueness of the solutions of the hydrostatic/ 
mean-field equation at high temperature. We then present numerical results 

822/78/5-6-10 
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which for sufficiently low temperature show a condensation phase transition 
in the grand ensemble, and, further, metastability regions with spinodal 
points. This is the finite-volume analog of the bulk condensation phase 
transition with a critical point. We also present calculations for the petit 
canonical ensemble, which reveal a new structure: an explosion/implosion 
phase transition between a quasiuniform vapor state and a small droplet 
with extended vapor atmosphere. This transition is not seen in the grand 
ensemble. Our canonical results imply an additional region with negative 
specific heat in the microcanonical ensemble. We believe that our results 
should be observable in microgravity experiments. 

Connection with the original van der Waals-Maxwell-Ornstein theory 
of condensation is made in Section 7, where a secondary, singular limit 
VA(X- y ) ~  A6(x--y), with A < 0, gives the classical theory plus Maxwell 
construction. Some open problems are listed in Section 8. 

2. T H E  LOCAL REFERENCE S Y S T E M  

We collect here a number of results for systems of particles with pair 
interactions (1.2). They readily follow by rescaling the standard thermo- 
dynamic limit sequencC 23-25) into a finite volume IAI. In the following, 
v~> 1 is the "voluminosity" parameter, in the sense that an equivalent 
system of the standard thermodynamic limit sequence would have volume 
vial. 

We discuss first the thermodynamic functions. In the microcanonical 
ensemble, a physical system with N,~>> 1 particles in a bounded open 
domain A c R 3 has total energy E,. Its Hamiltonian is 

N~ p2 
H(RN")(X, P ) =  ~ ~m + U(RNA)(X) (2.1) 

i = I  

with (X, P ) =  (xl ..... x)v; p~ ..... PN), Xi ~A, Pi~ R3, and 

U (RN")(X) = Z VR(X , - xj) (2.2) 
I<~i<j<~NA 

The asymptotic (in v) macroscopic equilibrium properties are captured by 
the entropy scaling limit 

SR(NA, EA)= lim SR(N,~, E~; A; v) (2.3) 

where 

NA{V" } kfftSR(N~, EA; A; v) =--~-ln ~ ~R(NA, EA; A; v) (2.4) 
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and 

~R(NA, EA; A, v) 

= vol{ (X, P)~AUx ~3,v .H~m((N/NA)I/3 X, P)<~ (N/NA) EA} 

with 

the integer part of vNA. 

Proposition 2.1. 

(2.5) 

N= [vN A]] (2.6) 

The function SR(NA, EA) exists and is increasing 
and concave w.r.t. E A E R +, EA > E~A~ 0, where E(A ~ is the ground-state 
energy. It is concave w.r.t. NAt  I% Its density SR/IAI is independent of 
volume I AI and shape of A. 

For given A, NA, and reciprocal temperature kBfl, the asymptotic 
macroscopic equilibrium properties are given by the free energy scaling 
limit 

FR(NA, 13)= lim FR(NA, f; A; v) (2.7) u~o 

where 

and 

NA { oN 
flFR(NA, fl; A; v)= ----~-ln ~.v QR(NA , f; A; v)} (2.8) 

QR(NA, fl; A; v)= ~AN exp{ --flu~N'[(N/NA) '/3 X] } m(dfNx) (2.9) 

with 

m(d3Nx) = ,2. -3N d3Nx (2.10) 

and 2 is the thermal deBroglie wavelength. Again, N is given by (2.6). 

Proposition 2.2. The function flFR(NA, f)  exists and is concave 
and decreasing in f ~ ~+ and convex in NA ~ N. It is related to SR(NA, EA) 
through 

flFR(NA, f l)= inf {flEA --kfflSR(NA, EA)} (2.11) 
E A >~ E~A Ol 

Its density F~[AI is independent of volume IAI and shape of A. 
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For given A, kBfl, and chemical potential/~ E R, the asymptotic macro- 
scopic properties are given by the scaling limit for the grand potential 

I2R(#, 3) = lim ff2R(]./, fl; A; D) (2.12) 

where, with No = N w {0}, 

fll2R(/~, fl; A; v)= --1 In 
0 

and 

ett"U I)N ~ A; I)) (2 .13)  

N~NO 

~(RN)(fl; A; v) = ~^, exp{ --flU(RN)(v'/3X)} m(d3Nx) (2.14) 

Proposi t ion  2.3. The function -- /~-~R(P,  fl) exists and is positive 
and convex both in fl and/~, and increasing in p. It is related to flFR(N.~, fl) 
through 

fl(2R(p, fl)= inf {flFR(NA, fl)--flpNA} (2,15) 
N.t~> 1 

Its intensive partner --g2R/IA I is identical with the thermodynamic pressure 
and independent of volume IAI and shape of A. 

Proof. We define A(t) to be a scaled domain, obtained from 
A -  A(1) by a uniform dilation, with IA(t)l = t lAI, where IAI denotes the 
volume of A. Then A(t) ,~ •3 as t ~ ~ in the sense of Fisher. We know the 
following limits exist: 

Let t =  N/NA with N =  ~vNA~. Then 

 B[1 ] 
SR = lim - -  In vol{ (X, P) e A'~(t) x R3N: H~N)(x, P) <<. tE n } 

...... IA(t)l 

(2.16) 

kaT in 1 ~A exp{--flu~U)(x)} m(d3Ux) (2.17) fR = vlirn - I A (t)-~ u.I 

and (N is a dummy now) 

k. rln ~ e"N f PR(P, f l)= lina ~ N,a,  N! JAur exp{-flU(Rm(X)} m(d3Nx) 

(2.18) 
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are the standard bulk thermodynamic limit definitions of the entropy 
density in the microcanonical, the free energy density in the canonical, 
and the pressure in the grand canonical ensemble, respectively. Since UR is 
positive and weakly tempered for K >  3, these limits exist and have all the 
thermodynamic convexity properties, c3'23'241 The limit functions are 
related by the standard thermodynamic Legendre transformations; see, for 
instance, ref. 3. The trivial rescaling of these limits into A(1)= A results in 
our finite-volume formulas. Q.E.D. 

The limit of the grand potential enjoys a variational principle which is 
shared only by certain thermodynamic limit systems. It is potentially useful 
for certain estimates relating a finite system to the asymptotic limit. 

Proposi t ion  2.4. For given A, fl,/~, 

g2R(p, /~)= sup E2R(FI, fl; A; v) (2.19) 
v 

Proof. Fr6hlich and Park ~26) noticed that for systems with strictly 
positive interactions, -g2 is subadditive in the volume along the standard 
thermodynamic limit sequence. Well-known facts about subadditive func- 
tions, e.g., ref. 27, imply the analog of (2.19) for any sequence of standard 
cubes, hence for any sequence in the sense of van Hove by approximation 
with standard cubes. All limits are identical by the previous theorem. Thus 
(2.19) holds by rescaling. Q.E.D. 

This concludes the collection of the thermodynamic functions. By 
rescaling and by the spatial uniformity of the one-particle density in the 
infinite volume limit, the one-particle density of our reference system (2.1) 
is uniform. It will be seen to become nonuniform as soon as we introduce 
the other interactions. 

3. REFERENCE S Y S T E M  IN AN  EXTERNAL FIELD 

We upgrade our description and consider the reference system in a 
nonuniform, external potential field ~b(x) of class C~ For instance, 
~ b ( x ) = - x . e .  represents a homogeneous gravitational force field. The 
resulting limit functions exist, but they no longer follow merely by a 
rescaling from known results of the standard thermodynamic limit. We 
discuss only the grand canonical ensemble. 

The grand potential at parameter v is now given by 

efl'UN vN ~(N) [ R, 
fl~R.4(/l, fl; A; 0)= - - !  In N~0 N! R.~,t', A; v) (3.1) 
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with 

~(N}I R" A; v) = f A R ek~.t", 
' N 

N 

i = 1  

Theorem 3.1. The 

S'2R.~(#, 

exp{ -/3U~m(vl/3X) -/3q~(X) } m(d3Nx) (3.2) 

(~(x,) (3.3) 

scaling limit 

fl; A) = lim s /3; A; v) (3.4) 
u ~ o  

exists and is given by 

~.,~(~,/3; A)= -fA p.f~,-r cl3x (3.5) 

The grand pressure pR.O= - [AI -1  OR.#(#, /~; A) is positive; it is increasing 
and convex in/~, and /~PR.o is convex in /L In general it does depend on the 
shape of A. 

Remark I. This theorem states that the grand pressure PR.O is the 
uniform spatial average over A of pressures PR with local chemical poten- 
tial /~loc(x)=/t--~b(x). By the convexity of /qoc~--~pR(Ploc,/3), Jensen's 
inequality applied to (3.5) yields the useful estimate 

pR.~(/./, fl; A) />  pR(/.t -- q~, fl) (3.6) 

Here, ~= [A]-' SA (~(x) d3x. 

Remark 2. Since ~b is continuous, it takes its maximum ~b* and 
minimum ~b. on the closure .4 of A. Thus 

I2R(It--(~*,~;A;v)>~t'2rt.~(la,/3;A;v)>~I2R(la--(b.,~;A;v ) (3.7) 

for all v. Taking limits, we obtain 

lim sup t'2R.~( p,/3; A; v) ~< (2R(/t -- ~b*,/~) (3.8) 

and 

lim inf 12R.~(/~, fl; A; v)>/(2R(/~- ~b., fl) (3.9) 

whence the existence of limit points of (3.4). The bounds (3.8), (3.9) hint 
at the structure (3.5). 
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P r o o f  o f  T h e o r e m  3.1 .  We notice that given any continuous r 
then for any small e > 0 ,  we can find a Lipschitz constant L(e), and L(e)- 
Lipschitz-continuous upper and lower approximations to r which differ 
from r by less than e in the uniform norm. Since PR(/~) is continuous, the 
right-hand side of (3.5) can be approximated arbitrarily closely from above 
and below by replacing a continuous r with, respectively, an appropriate 
upper and lower Lipschitz-continuous approximation to r Hence it suffices 
to prove (3.5) for all Lipschitz-continuous ft. 

Thus, let ~b satisfy 

I r 1 6 2  ~<L~ I x -  yl (3.10) 

with some Lipschitz constant L~ >0.  Let ~(e) be a partition of R 3 into 
cubes of side length e, such that after at most a rotation, a translation, and 
a dilation their centers coincide with 72 3. Let A(e) be the subset of ~(e)  
which consists of those cubes whose intersection with A is nonvoid. In A(e) 
there are Igl (e) cubes Ak ,  k e g  =- {1, 2 ..... Igl }. Let x ekl be the center 
of A k. 

By Lipschitz continuity of r and the positivity of UR, we estimate 

e p~'lk~c)Nk o N k ~ t R N k ) ( A k .  P) et~"N VN.~'N'tA" V) ~< H Z - -  , (3.11) 
N !  R.r , Nk  ! 

N~I~  0 k E M  N k E N  0 

#tkl(e) = p -- r tk~) + 2L~e (3.12) 

Taking the lim inf of - v - ~  ln(3.11) gives 

lim infQR.,(~, fl; A; o)1> - ~ IAkl PR['/-t(k)(~), fl] 
v ~ o o  k ~ m  

(3.13) 

for all e. We now let e~O, and from the Riemann sum definition of a 
Riemann integral obtain 

lim ~ f  (2R.r p, fl; A; v)~> -I. pR[#--~b(x), fl] d3x (3.14) 

Next, to obtair~ an estimate in the opposite direction, we inscribe in 
each cube of A(e) a smaller cocentered, parallel cube of side length fie, with 

< 1. We delete from this array of smaller cubes all those which are not 
entirely contained in A. The resulting array consists of I.,f/I (fi, e) cubes 
A , , k ~ / Q = { 1 ,  2 ..... IMI}. The complement A - { A k }  is called "the 
corridors." 



1348 Kiessling and Percus 

We now use Lipschitz continuity of r a typical corridor 
estimate t-'3~ for UR, and then Jensen's inequality to obtain 

exp(flpN), uo~mlt R. Ak; v) 
N ~ [~ 0 

>~ ~ --. ~ ~ exp[flP'k'(--6e)Nk] vNk~Nk'(fl;Ak;V) 
N,~o N,'t, ~ ~o ke~t Nk! 

x exp [ - - J ( v ) ~  NkNk. 1 
k'e l~l\{k } 

~>exp[-J(v) ~ ~ <N,N,.>~.] l-I ~ exp[fll'z'k'(--6e)Nk] 
IEt~! I' E~ l \ { ] }  k ~ l  NkEI~I 0 Nk! 

x vNk~tRUk)(fi; Ak; v) (3.15) 

where 
K 

J(v)= �89 ~ fla~'lv-"/3(2[1 - 6 ]  ~)-" (3.16) 
t l = 4  

The average here is, with 1r l', 

with 

I--[k ~ M ~N,~ ~o NINrrlk~ 
(NtNr}E - ov TIk) -- <N,>, < N r > ~  (3.17) 

rCk)= exp[flPlk)(--6g)Nk] Nk !--IvNk~'~{RNI(fl; "~k;  V) (3.18) 

From (3.17) we readily obtain 

= g'2 r ,~kq  V - I ( N k )  --63t, R[/~ ,,--013),fl;,fJk;V ] (3.19) 

Since - O r ( v )  is increasing and convex in p~k~ its limit function for v ~ 0% 
i.e., [Ak[ pR[p~k~(--6e),fl] has the same properties. By standard facts 
about convex functions (e.g., ref. 27), the right derivative of a convex 
function always exists and is not less than its left derivative, which exists, 
too. This implies the estimate 

iim sup v - l ( N k )  <~ ]Ak[ t3,+pR (3.20) 
o ~ ~r,~ 
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Clearly, J(v) = 0(v-4/3) for v ~ ~ .  This and (3.20) imply that lira sup 
of - v - t  ln(3.15) gives 

lim sup f2a.~(It,/3; A; v) ~< - ~ IAkl paEit~k~(-fie), fl] 
v ~ o o  k e M  

(3.21) 

for all e and 6 < 1. We now choose 6 = 1 - e and take the limit e J, 0, noting 
again the Riemann sum, and obtain 

lim sup Qa,~(it, fl; A; v) -.< --fAPaEIt--Ck(X),fl]d3x (3.22) 
v ~ a r ~  

The bounds (3.14) and (3.22) prove (3.5) for all Lipschitz-continuous r 
and by the argument given at the beginning of proof, also for any con- 
tinuous r Q.E.D. 

We can now go further and readily obtain the local one-particle 
density of the system in all cases in which for all x eA,  I t - r  belongs 
to the set of t for which t ~ pa(t, fl) is differentiable. By convexity, PR is 
differentiable except at most at denumerably many points. In case of 
differentiability we thus obtain, by taking the functional derivative ~281 

p ( x ) =  -6---r [A-~ PREIt--~b(x)' fl] d3x (3.23) 

which results in 

p(x) = 0,, PrEit - r (3.24) 

It is readily checked, noting the p convexity ofpR, that p(x) given in (3.23) 
coincides with the limit v---, oo of the corresponding finite-v definitions of 
p(x; v). 

If for an Xo, I t -  r takes a value for which PR is not differentiable, 
and if r is not a maximum or minimum of ~b, then by the implicit 
function theorem there exists a piecewise continuous surface which devides 
A into disjoint subsets. For instance, at Psv, the solid-fluid transition, 
# - r  = # s v  defines the interface between open sets Av and A s, which 
are the interiors of the supports of fluid and solid, respectively. We may 
then obtain the particle density in each of the supports by the appropriate 
restriction of (3.24) to that set. The different densities form a sharp Gibbs 
interface. Clearly, at those Gibbs interfaces the sequence of finite-v 
expressions for the density does not converge. In the present work we are 
not investigating such reference system interfaces. 
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4. THE H Y D R O S T A T I C / M E A N - F I E L D  L I M I T  

The case of particles with both core and tail interactions, subject to an 
external continuous potential field ~b(x), can be reduced essentially to the 
one of the previous section by using functional Laplace transform techni- 
ques for the weak attractive tail part. This is outlined in refs. 1, 13, and 14. 
We state first our main results and then present their proofs. Let us also 
stipulate the notation s fl; A; v) for s #,/3; A; v), etc., when all 
interactions are present. 

The grand potential at finite voluminosity, s A; v), is given by 

~ru efl~u VN.~(N)( B; /3t'2(U, /3; A; v)= --l  ln ~ . .  A;v) (4.1) 
/) N o 

with 

.~ A; v) = ~Au exp{ -/3[UCRm(V'/3X) + v-'UtAm(X) + r  } m(d3Ux) 

(4.2) 

Here, 

u~N)(x) = ~ VA(X,-- Xj) (4.3) 
l<~i<j<~N 

The factor l/v in front of UA in the partition functions compensates 
for the nonextensive ( U A ( X ) ) ) ~ ( N )  2, which results through our 
"hydrodynamic" scaling v-  ~ ( N )  ~ const ( = physical "number" of particles 
in A), and v- 1 ( U ku)(vl/3X)) ~ const ( = physical internal potential energy 
of the reference system). 

T h e o r e m  4.1. The limit grand potential 

t'2(/~,/3; A)=  lim Q(/~,/3; A; v) (4.4) 
v ~ c ~  

exists and is given by 

s A ) =  min G[Q] (4.5) 
q 

where 

G[~0] =IA { - �89 Q(x)(VA * Q)(x)--pR[#toc(X), /3]} d3x (4.6) 
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with 

U,or = u - r  (vA �9 ~)(x) 

(VA * O)(x) = f Va(x - y) O(Y) d3Y 
aA 

(4.7a) 

(4.7b) 

the min imum being taken with respect to the measures o~C~ * [ the 
notat ion O(x) is symbolic] .  The grand canonical pressure p(#,  f l ; A ) =  
- [ A [ - 1  (2(/t, fl; A) is positive, and tip is convex as a function of both fl and 

p, and increasing in ~. 

To  obtain the particle density at given/~, fl, A, and ~b, we again have 
to take into account  that  pR(/.t, fl) may not be everywhere C 1, but may  
have kinks associated with first-order phase transitions of the underlying 
reference system's particle distributions. By convexity of/aw-, pR(/A, fl), at  
most  countably  many  kinks can exist for a reference system, and by the 
known analyticity at small fugacity, t31 for each fl there is a finite smallest 
such # at which a kink can occur. Molecular  dynamics simulations (291 
indicate that solid-fluid phase transitions indeed do occur at high bt 
for various reference systems with repulsive interactions. The l iquid- 
vapor  transition typically exists for much lower values of  # for which 
/aw-+pR(/A, fl) does not have a kink. In that regime, pR[lAloc(X),fl] is 
differentiable w.r.t, to the first entry variable for each x ~ A. 

Let the/~tk)(fl), k = 1, 2 ..... denote all points at which/a ~ pR(//, fl) has 
a kink. We assume they can be ordered as p i l l <  #12)< . . . .  For  given p, the 
corresponding level sets /~loc(x) =/~ - ~b(x) - ( VA * p)(x) =/~t*l parti t ion A 
into a countable set of disjoint open subsets Atk), k = 1, 2 ..... given by 

A(k)= {x~ A I U,or < ~(k)}\A(k- ') (4.8) 

with A I~ ~ .  Clearly, the closure of t) k Atk) is the closure of A. 

T h e o r e m  4.2.  Let p(x) be a particle density for which G(#, fl; A ) [ p ]  
is the global min imum of G, given/~, fl, A. In each subdomain  A (kl, p(x) is 
a solution of 

p ( x )  = a,, pR [~ - 4 ( x )  - (VA * p ) (x ) ,  B] (4.9) 

We have displayed p~or here to make  it manifest that  (4.9) is a non- 
linear integral equation. It may typically have many  solutions, not all of 
which are minimizers. If more than one global minimizer exists, the 
ensemble is sitting at a first-order phase transition. Each member  system, 
however, has one of the globally minimizing densities. In case a reference 
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system's phase transition is encountered, we face the interesting additional 
complication that with (V A �9 p)(x), hence /~oc(X), also A Ik~ is not known 
a priori. In that case (4.9) poses a free boundary problem. 

We consider next the equation of state. Wherever the following limits 
exist, the average number of physical particles in A is defined as 

JV'(#, fl; A)=  lim v - l ( N ) v  (4.10) 
v ~ c o .  

the overall interacti9n energy due to the power k term in (1.2) as 

~rR.~(/a, fl; A)=  lim v-~(U~U)k(vl/aX)) ~, (4.11) 
V ~ O 5  

where UR,k is defined in an obvious way analogously to (2.2), and the 
"cohesion" energy due to the tail interactions as 

~A(/~, fl; A)=  lim V--2(UtAN)(X))v (4.12) 
v ~ o o  

The grand ensemble average ( . ) , ,  at parameter v is given by 

(K(N, X ) ) v = e  "t~a ~ eP~'NN!-JvUf K(N, X) Jgl.lnt(N)"~3Nv [(2 X)" (4.13) 
N ~ ~ 0  J A  N 

the m e a s u r e  J[/[~vNI(d3Nx) being the integrand of 3tin. 

T h e o r e m  4.3. Given A and ~, for almost all/1 and fl the quantities 
JI/', ~/rR,k, and ~//~ exist. In these cases the grand pressure satisfies the 
equation of state 

IAI p = JV" k B T + ~//'A + 5 ~UR. k (4.14) 
k = 4  

We conjecture that the following is true also, and we outline a proof. 
However, a rigorous proof must be given in future work. 

C o n j e c t u r e  4.4. Under the same conditions as in Theorem 4.3, we 
have the identifications 

JI f = I/1 p(x) d3x (4.15) 

1 
~UA=~,I~Ap(x ) V A ( X - y ) p ( y ) d 3 x d 3 y  (4.16) 

k = a ~ n . ~ -  {PR[/~toc(X), fl] --knTp(x)}  d3x (4.17) 

where p is a global minimizer of (4.6). 
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We come to the proofs of our results. To prove Theorem 4.1, we need 
the representation of a canonical equilibrium density for VA in terms of 
Gaussian function space integrals? ~ We introduce a family of cutoffs 
Z;~(x) ~ C~(A) which in A (an open set) converge pointwise from below to 
the characteristic function XA(x) of A as e--* 0, and which deviate from XA 
only in a small shell of thickness e. Now introduce the linear symmetric 
operator  W~. with integral kernel 

W~(x, y)= -z~,(x) ~VA(x- y) z~,(y) (4.18) 

This operator  maps distributions into C~ and therefore C~ into 
itself. W~ is positive definite with positive inverse on Ran(W~). We can now 
construct a nested sequence of Hilbert spaces H,,. Each H,, is the comple- 
tion of C~(A) w.r.t, to the canonical norm Ilull]=<u,(l+ W~l)"u>, 
where ( . , .  > is the canonical L2(A) scalar product. The Hilbert space 
H ~  = 0, ,~ _~ H,, is a nuclear space which consists of C ~- functions for 
W~-1, and H ~ is its weak dual (i.e., with respect to the pairing ( - , .  >) 
which consists of the distributions for W~ 1.~3o~ By duality, elements of H~. 
are linear functionals on H . . . .  i.e., O: fw+ O(f)  ~ g~ for f ~  H ~ .  

By Minlos'  theorem, there exists a mean-zero Gaussian measure 
d~(O) o n H  ~ with mass 1, 

f dy,(O) = l (4.19) 

and covariance kernel v-lWAx,  y), so that 

f d~.(O) e-e~f~= e O/2"l<f" wj> = S( f )  (4.20) 

for f E H~:. Here, 

<f W~.f> = i f f  f (x )  W,(x, y) f ( y )  d3x d3y (4.21) 

The functional S(/f)  is the characteristic functional of dT~. The self-energy 
terms are taken care of by Wick ordering, 

:e - o~f): = e - ~t/2v)<j: .5f  >e - o~.f) (4.22) 

Since S(f )  is continuous in its natural H _  ~ topology induced by ( -, W~. ), 
the measure d~,~. is concentrated on the subspace H 1 of H _  ~. Since our W, 
is itself C ~ the space H_~ contains singular measures; thus H 1 is equiv- 
alent to functions which are themselves C ~ We may thus take f - +  6, ,  and 
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we write /~$(x) for O(6x). Choosing in particular f~SZ~=j  fix, yields the 
convenient representation 

with 

N 

exp[-(1/2v)~U~U.~(X)]=I dy,(O) l--I :exp[-I~O(x~)]: (4.23) 
i = 1  

:exp[ -/~0(x,.)]: = exp[(1/2v)/~ VA(0) Z~(x/) 2 --/~O(x;) ] (4.24) 

where the additional subscript ~ at UA indicates that Z](x) VA(x- y) X~(Y) 
is used instead of VA. In the following, a subscript e will stand for exactly 
this replacement. 

Proof of Theorem 4.1. Using (4.23), we write 

~ e'~'VvN.~'N'(~;A;v) (4.25) ~D~(#,~;A;v)=-- In d~(O) Z -~. re.r, 
N E N 0  

which states that exp(-v3f2~) is a Gaussian average of grand canonical 
partition functions, each of which represents a reference system in a given 
external continuous potential field 

Y,(x) = ~b(x) + r - (1/2v) Va(0) Z~(x) 2 (4.26) 

i.e., 

/~Q,(/J,/~; A; v)= --In { f d?,(O)exp(-V/~E2R, r,[/~, /~; A; v])}"~ (4.27) 

Because the covariance ~ v-l ,  the Gaussian measure concentrates sharply 
as v ~ c~. Formally we have 

dye(O) = exp[ - (v/Z) (/~r W~-'/ff~b ) ] D• 

Taking the limit v --* ~ gives 

We show the infimum is a minimum. We need only control the 
asymptotic behavior of ~R,~+~ as ~ becomes large negative, because then 
~l~.~§ becomes large negative, too. For our reference systems, a scaling 
argument reveals that the free energy density (2.17) scales as fR(p)~p ~ 
at large density p, with e > 2 .  By convex duality, pR(#)~/~ ~~ with 
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I / e+  l / e * =  1 for/ l  large, whence pR(/.t)= O(/.t 2) for # large. Thus t2R,r = 
o(11~011~2) for ~, large negative. Since <f  W=f>I/2<~llW~rlo~ IlfllL2, by 
topological duality the norm <~, WT'~> ~/2 dominates the L z norm 
of ~O. Hence our functional is continuous and coercive in the norm 
<~, Wjl~b> m, whence a finite minimum of (4.28) exists. 

For any ~b c H_  oo, 

O(x) = zS(x)(VA * [zSo])(x) (4.29) 

has the inverse in H~o 

e(x) = -/~ W{' [0 ](x) (4.30) 

In general, Q here need not be positive. We can thus eliminate ~, in (4.28) 
in favor of Q. Because V A is C ~ we may let 0 be a (signed) measure and 
use the topology of weak* convergence (for 0). The functional in braces in 
(4.28) becomes then our (4.6). 

Finally, we have to let e~0. Clearly, W~T--flVA, and monotone 
convergence proves part one of Theorem 4.1. 

The convexity and monotonicity properties follow immediately from 
the fact that for finite v, I2(v) has these properties. Q.E.D. 

Proof of Theorem 4.2. By the piecewise differentiability of 
p~--~pR(/~,fl), the global minimum is a stationary point of G[O] with 
respect to infinitesimal w* variations of Q that leave the #t~) level sets 
unchanged (the converse is generally not true). Upon taking the w* func- 
tional derivative of G[O] with respect to the #tk) level set preserving g, we 
find our hydrostatic/mean-field equation for the stationary points Qstat" 
Clearly, by (4.9) and the monotonic increase of PR with #, any solution 
of (4.9) is positive. Since - I A l - l f 2 = p  is the grand pressure, and 
# - ~b - VA * g the local chemical potential for PR, the local thermodynamic 
relation p = O,p now shows that the minimizing 0 is indeed the particle 
density p. Q.E.D. 

We remark that when a unique minimizer exists (absence of a first- 
order phase transition), at points of/a differentiability of PR the sequence 
of finite-v densities converges to the globally minimizing solution of (4.9). 
This can be established by convexity arguments. At points of phase tran- 
sition, the finite-v densities generally do not converge to a single minimizer. 

Proof of Theorem 4.3. The equation of state follows from de 
l'Hospital's rule and the characterization of the limit pressure l~y the 
variational principle, Theorem 4.1. Knowing that the limit v--* oo exists 
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for g2(v), and from the fact that (2(v) is differentiable, we obtain by de 
l'Hospital 

- (2 (p ,  f l ;A)=  lim v - ' ( N k B T - v O , , U ~ m ( v ~ / 3 X ) + v - ' U ( A m ( X ) )  v (4.31) 

For UR we substitute (1.2). Since - ~ ( ~ ,  fl;A, v) is convex in p, a~  ~, 
and an separately, the same is true for its limit v ~ ~ .  Therefore, given 
~b and A, for almost all p, fl the individual limits (4.10)-(4.12) exist as 
derivatives of -g2(p, fl; A) with respect to either/l  or one of the coupling 
constants. By linearity of the finite-v expectation functional we can thus 
replace (4.31) by (4.13) wherever the individual limits exist. Q.E.D. 

We finally outline a proof of Conjecture 4.4. The identification of Y 
with S P is correct by Theorem 4.2. The identification of ~ with the 
bilinear form (1/2)S p VA * p is more subtle. By assumption, the individual 
limits exist and so we are not at a first-order phase transition. Therefore a 
unique global minimum exists. In the limit v=  c~, the space of infinite 
sequences of exchangeable measures carries the weak limit points of the 
finite-v n-particle densities. By de Finetti's theorem, all limit measures are 
expressible as averages of product measures. In case of a unique global 
minimum the average ought to be a singleton, resulting in our identification 
for ~/~. The identification (4.17) now follows from the others and 
Theorem 4.1; clearly, (4.17) is the negative excess grand potential due to 
the short-range interactions. 

5. ON THE PETIT-  A N D  M I C R O C A N O N I C A L  E N S E M B L E S  

Our hydrostatic/mean-field limit is conceptually very close to the 
classical mean-field limits of refs. 15-19 and also to the quantum mean-field 
limits of Thomas-Fermi 12~ and of Boltzmann type, 1221 where local 
thermodynamics is always that of the ideal gas, modulo statistics. In par- 
ticular, the works of Eyink and Spohn, Messer, and Thirring et al. discuss 
equivalence of micro and petit ensembles and show that, unlike the 
standard bulk limit, the ensembles are generally not equivalent in the 
neighborhood of a first-order phase transition. The reason is simply that 
the microcanonical ensemble may contain a region with the "wrong" con- 
vexity of the entropy as a function of the energy. Although the canonical 
ensemble is still obtained from the microcanonicat one via the Legendre 
transformation (2.11), with SR replaced by the relevant entropy function 
of the mean-field limit, it is not generally true that the microcanonical 
ensemble is obtained from the canonical one by the inverse of (2.11). 
Indeed, the region with the wrong convexity of S(E) is a region with 
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negative specific heat and is bridged by a first-order phase transition in the 
canonical ensemble, obtained correctly from the Legendre transform 
S ( E )  -* flF(fl). The inverse Legendre transform f lF(fl)  --. conv[S(E)] gives 
the convex hull of the original S(E) .  The region of negative specific heat is 
not recovered, but replaced by a straight line. 

Although we have not rigorously constructed the canonical and the 
microcanonical counterparts of our grand-canonical hydrostatic/mean-field 
limit, we firmly believe that the same principles as found by Eyink and 
Spohn and others relate the various ensembles here, too. In the following 
we assume this is true. The hydrostatic/mean-field limits in the petit and 
the microcanonical ensembles are then not obtained from the limit of the 
grand canonical ensemble. However, they are obtained from the functionals 
defining the grand ensemble limit if we go beyond the global minimizers of 
(4.6) and consider all stationary points of (4.6). This brings multiple-valued 
mappings with it. Hence, we need to be slightly more pedantic with the 
notation. 

For all solutions p(x;  FL, fl) of (4.9), we compute (~(/~, fl) = G [ p ( x ;  Iz, fl)]. 
Notice that (~ is a multiple-valued map of its arguments whenever (4.9) has 
several solutions for the same fl and/1. However, locally each branch of 
is well defined and differentiable w.r.t. # and fl modulo a set of singular 
exceptional points. For each branch of (~, we define the (locally) unique 
function 

NA(~,/~) = -~,,G(~,/~) (5.1) 

wherever the derivative exists, and the (locally) unique function 

P(~,/~) = G(i',/~) + ~'NA(~',/3) (5.2) 

Clearly, viewed globally as functions of /~ and /~, both -g'A and F are 
multiple-valued. For each /~,/~ local branch, we now eliminate, via (5.1) 
and (5.2), the variable/~ in favor of a new variable NA. Set N A = ~[A(ll, fl) 
locally, which upon inversion for fixed /~ gives /~=~rAI(NA,/3 ) locally. 
Inserting this in (5.2) defines locally a new function F ( N A ,  fl). When viewed 
globally, P in general is a multiple-valued function of its arguments. The 
free energy F of the canonical ensemble is then determined by 

F ( N A , / / )  = rain P(NA,/~) (5.3) 

where the minimum is taken with respect to the various branches of F for 
given values of NA and //. The corresponding canonical particle densities 
are solutions of (4.9) for which the free energy is the global minimum in the 
sense of (5.3). 

822/78/5-6-tl 
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In a similar way the microcanonical ensemble is found. For each 
branch of the multiple-valued F(NA, fl) we define locally 

E(N A, fl) = aaflP(N , ,  fl) (5.4) 

where the partial derivative is to be understood for fixed NA, and also 

k ;  ' O6(N A, fl) = f lE(N A, fl) - fl['(N A, fl) (5.5) 

Globally these are in general multiple-valued mappings. Locally we intro- 
duce a new variable via E =  E(NA, fl), which can be inverted for fixed NA 
to give fl = E - ' ( E ,  NA). Inserting this in (5.5) defines locally a new function 
S(NA, E). Viewed globally, S (N, ,  E) might be a multiple-valued function 
of its arguments. The entropy of the microcanonical ensemble is deter- 
mined by 

S(NA, E) = max S(NA, E) (5.6) 

where the maximum is taken with respect to the various branches of o 6 for 
given values of NA and E. The microcanonical particle densities are those 
solutions of (4.9) which generate S(NA, E). 

6. H A R D  BALLS W I T H  - r  -6  I N T E R A C T I O N S  

We now study the nonlinear hydrostatic/mean-field equation (4.9), 
assuming a reference system of many hard balls of volume [bl =4~a3/3. 
They interact with VA(r) given by (1.3), which behaves as ~ - r  -6 for large 
r, thus mimicking attractive van der Waals interactions. These specifica- 
tions allow us to prove some quantitative estimates which can be tested 
against particle simulation data. Most of our results in this section are, 
however, obtained by numerically solving (4.9). We also intend to compare 
our results with measured data of the noble gases in some future work. For 
this purpose we include here the quantum of phase volume h 3 in the usual 
heuristic manner. We set q~-= 0 in most of the following. However, if one 
wants to take wetting or nonwetting of the container walls into account, 
q~ r is necessary. We stress that several of our qualitative statements will 
not sensitively depend on our choice of PR and VA. 

6.1. Hydrosta t ics  of  the  Reference  System 

In the fluid phase of the hard-ball reference system, a very good and 
also handy approximation for the pressure PR(#, fl) is given in parameter 
representation, 
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[b[ tieR = ~ ''[- /~2 ''{- ~ 3 - ~4 
( 1 - , 7 ) 3  - g , (~ )  (6.1) 

)].3 8r/-- 9r/2 + 3r/3 
in ~ = / 3 # - l n  I-~ = In r/-~ (1 _q)3  -- gx(q) (6.2) 

with 0 ~< r/~< qF < 0.5. We shall call ~ the effective fugacity. The particle den- 
sity of the reference system 

pR(It)=63t, PR(I.t) (6.3) 

and the auxiliary quantity q are related by 

[bt PR = 7  = g ; ' ( l n  ~) (6.4) 

whence q is a dimensionless particle density. The few known terms of the 
virial expansion for the exact equation of state of a hard-ball fluid are 
reproduced by (6.1) to within a few percent, and it has been reported to 
deviate from the numerical simulation data by less than 1% over the whole 
fluid range 0 < r/< l]g,~, ~], = 0.49. (31'32"29) 

The numerical fit alone is not enough, though, to be acceptable as a 
thermodynamic pressure. The gap is filled by the following. 

Proposition 6.1. Extend the representation (6.1), (6.2) to all 
r/~ (0, 1 ). Then the mappings # ~-* PR(#, fl) and fl ~ flPR(#, fl) are positive, 
convex, and C ~ for all p e r  and all /~sll~ +. The first one is also 
increasing. 

ProoL For r/~(0,1),  the mapping q~--~g~(rl) is C ~, positive, 
increasing by O, gj > 0, and convex by O,, g~ > 0. For q ~ (0, 1), the map- 
ping q~--+gz(q) is C a, onto R, and by 

O,, g2(q ) = 1_ c~,, gt(q) > 0 (6.5) 
q 

also increasing. As such, the inverse mapping q = g_;- ~ [ln ~] is well defined, 
positive, and increasing. Therefore the mapping 

[3 ]b} Pa(P, /~)= g t ( g f ' [ l n  ~]) (6.6) 

is C ~, positive, increasing in #, and convex in both variables. Q.E.D. 

The restriction to the regime ~/< r/F gives therefore acceptable func- 
tions /~PR(/~,/~) and pa=Ol, pa(#,t~). They both share with the exact 
expressions of a hard-ball fluid a dependence on p and/3 only through the 
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Fig. 1. The dimensionless pressure fl Ibl PR of a hard-ball system without attractive inter- 
actions as a function of In ~. The dotted curve gives the asymptotic low-density law of the 
ideal Boltzmann gas. 

combination In ( =  t i p -  In(23/lbl ); see (6.2). We take ;I, as definition of the 
maximal fluid density, for which In ( =  15.208 .... 

For comparison with later results, we display the pressure and the 
density of the hard-ball fluid without attractive interactions as functions of 
the logarithm of the fugacity in Fig. 1 and 2, respectively. 

We see in Fig. 2 that there is a point of maximum slope for the map 
In ~ ~ ~7. We shall make use of this fact by proving the uniqueness of the 
high-temperature phase. Our observation is made precise by the following: 
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Fig. 2. The dimensionless density r/= Ibl PR of a hard-ball system without attractive inter- 
actions as a function of In (, together with the low-density law of the ideal Boltzmann gas. 
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P r o p o s i t i o n  6.2. For pR(/a, fl) defined by (6.1), (6.2), a global 
maximum of c~,, PR occurs for 

In ~M = --0.67244 (6.7) 

at which 

r/g = g2--l( In ~g) = 0.130444 (6.8) 

and 

0,,~ PR [,,M = 0.047164 Ibl - ' /~  (6.9) 

where PM(//) is related to In ~g by (6.2). 

Proof. For convenience we extend (6.1), (6.2) to all r/~(0, 1). By 
(6.6), a maximum of C~m, pR(p) corresponds to an q at which 0, g,_(q) takes 
a minimum. By 

lim 0,g2 = +oo =l im 63,1g 2 (6.10) 
qJ.O q]" I 

and the continuity of (6.2), a global minimum of a, g2(r/) exists for some 
r/~ (0, 1), at which c3,, g2(q)= 0. This happens at a fixed point in (0, 1) of 

~ - ~  ] (6.11) 

This mapping is a contraction on (0, 1), whence a unique and stable fixed 
point exists and is easily found via iteration. It is given by (6.8). Therefore 
the global maximum sits in the fluid regime. The rest of our claim now 
follows. Q.E.D. 

We are chiefly interested in the fluid regime. However, to determine 
the global minimizers of G[O] which are all-fluid, we have to control the 
solid regime to some extent, too. Equation (6.1) is not a good approxima- 
tion to the equation of state for r/z<r/<r/cp, with r/r the normalized 
close packing density for hard spheres. Between r/F and some qs,,~0.54 
there seems to be a coexistence region for a solid-fluid phase transitionJ 33~ 
For r/> r/s, g~ and g2 have to be replaced by g3 and g4, say. In particular, 
g4(r/) has to be larger than 15.208 .... monotonic increasing, and diverge 
T + ~  for r/T r/cp. This is all we need know about the solid regime; we do 
not have to specify PR(P, fl) in the solid regime of the reference system. 
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6.2. The H y d r o s t a t i c / M e a n - F i e l d  System 

We now discuss the complete system. Solutions of interest for fluid 
studies exist in a restricted (/~,/3) regime. Since we do not specify pR(/l, /3) 
in the solid regime, we can identify the global minimizers of G/e/ only in 
an even smaller domain of the (p,/3) plane for which we are sure that no 
solution exists which is not all-fluid. In the next proposition we summarize 
two results which discriminate the fluid from the solid phase. For their 
proofs, see ref. 34. 

Proposition 6.3. Let pR(/~, fl) be given by (6.1), (6.2). Let VA(r) 
be given by (1.3). Let A be a ball of radius R, with R >> ro. Let fl be given. 
Then at least one all-fluid solution of (4.9) exists for 

: . ,  
In ( <  15.2 8 Ibl r----~ + O (6.12) 

For 

3 + 0  (6.13) In ( <  15.2 16 Ibl ro 

no solution of (4.9) exists which is not all-fluid. 

Having thus sorted the solids from the fluids, we are finally ready to 
inquire into the fluid regime. We begin with the following more general 
result. 

Theorem 6.4. Let /~--*PR(#, fl) be the positive, increasing, and 
convex pressure of a reference system [not necessarily (6.1), (6.2)], and let 
aj,u PR have a global maximum at ~ =/~M with respect to those/~ for which 
the reference system is in the fluid phase. Let Ou, pR(l~ M, ~)= M(fl) be the 
global maximum. If 

M(fl) IIVA* IlIL~ < 1 (6.14) 

then there is at most one solution of (4.9) with density entirely in the fluid 
regime of PR. 

ProoL Let (6.14) be true. Assume there are two solutions of (4.9), 
P l ~-P2, both entirely in the fluid regime of the reference system. By the 
fact that they are solutions of (4.9), /~oc(X)i=/~-VA * pi, i =  1, 2, takes 
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everywhere in A only values for which pR[Ploc(X)i, fl] is in the fluid regime. 
Let - VA * Pi = ~bi" Then 

IIp~-p,ll~, = I. IOuPR(# + O2, ~)-O.pR(P + O,, fl)l d 3x 

= " 63uu P R ( #  + t, ~) dt d3x 

f max { q.,i, ~b2 } 

~fA ~mi~{~..q,..} O~,.pR(#+ t, ~) dt d3x 

"~A a rain { ~kl,t.b2 } 

=M(fl) fA I~O~-0,1 d3x 

~< M(/~)IIVA * IlIL~ IIP2--PIIIL' (6.15) 

which, by (6.14), is a contradiction. Hence, there is at most one solution 
entirely in the fluid phase. Q.E.D. 

This implies the following result for the hard-ball fluid with r - 6  inter- 
actions. 

Corollary 6.5. Let PR(N, fl), VA(r), A, and ro/R be as in Proposi- 
tion 6.3. Let 

801bl r3o < 1 + O  
(6.16) 

Then, if in addition p satisfies the bound (6.12), there exists a unique solu- 
tion of (4.9) which is fluid everywhere in A. If/a satisfies even the bound 
(6.13), then the unique all-fluid solution is the only solution of (4.9), 
whence it is the global minimizer of G[O]. 

ProoL We want to prove Corollary 6.5 as a corollary to 
Theorem 6.4. For PR(#, fl) given by (6.1) and (6.2), by Proposition 6.2, 
(6.9), we have with 0.047164 < 0.05 the estimate 

M(fl) <0.05/3 Ibl-' (6.17) 
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The sup norm of V A * 1 is obtained from 

4ro 3 2Rro(R 2 - ro 2 - r 2) 
- - -  ( V A  * 1 ) ( r )  - -  

ntr A (R 2 + r~ + r2) 2 -- 4R2r 2 

2 ( R  + (--  1)" r )  
+ ~ arctan 

n = 1 ro 

with r = I x l .  The maximum is taken for r =  0, giving 

R2 -- r 2 rc 

(6.18) 

2to 3 
IIVA* 111~ = arctan + R r o ( R Z + r , ) 2 - 2 + O  (6.19) 

7 ~ 0 "  A 

With (6.19) and (6.17), Theorem 6.4, (6.14), gives (6.16) as an estimate for 
the critical temperature above which at most one all-fluid solution exists. 

To be in the fluid phase, (6.12) has to be satisfied by/~, and if (6.13) 
is satisfied, there is no other solution at all. Finally, if (4.9) admits only one 
solution, and if this is all-fluid, this is necessarily the global minimizer, as 
the global minimum is then a regular critical point of G[Q]. Q.E.D. 

We remark that for ro/R ,~ I, the correction term in (6.19), whence in 
(6.16), is small and can be discarded. (For concreteness: R =  1 cm and 
ro = 1/~, so that R = 108ro .) 

The uniqueness regime at high temperature has an interesting physical 
interpretation, which is suggested by the fact that the second derivative 
0,~pR(/t,  fl) has a global maximum for a ~ - / , l M ( f l ) < f l S F ( f l )  , where /aSZ 
stands for the solid-fluid phase transition. This signals a nearby maximum 
in the fluid compressibility ~c(/~)=pR(/Z) -2 0t,~p R. In other words, if the 
attractive tail interactions cannot compress the fluid sufficiently under 
conditions of maximum compressibility, no transition between states of 
different density can occur. 

We mention here that in ref. 34 we have obtained a more general 
control over the solution structure of (4.9) for the system discussed here. 
Based on fixed-point theorems and monotone iteration arguments, we 
show uniqueness for the low-fugacity phase, determine a regime with multi- 
ple solutions, prove a condensation phase transition, and give estimates for 
the spinodal points. We are not going to discuss this further here, but 
instead refer to ref. 34. 

6.3. Numerical  Results 

In addition to the analysis of the previous section we have integrated 
(4.9) numerically for the reference system given by (6.1) and (6.2) and with 
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x 10 .3 

O. 

C i -OJ -0.034 -0.1~33 -0.032 -0.(~31 -0.03 -0.1~29 -0.1328 -0.027 -0.026 

Fig. 3. For computed solutions p of (4.9), the negative dimensionless grand functional 
- IAI - ~ Ibl ~G[p] versus In ~. The proper grand ensemble is represented by the maximal part 
of the multiple-valued curve, which thus shows the dimensionless grand pressure Ibl/3p as a 
function of In ft. The units are the same as in Fig. 1, for comparison. At the kink there is 
the traditional first-order condensation phase transition. The swallowtail structure is not 
accessible in the proper grand ensemble. 

V A given by (1.3). We have applied a combination of two complementary 
algorithms, both based on Picard and Newton iterations, to get the solu- 
tions in different parameter regimes. Details will appear elsewhere, t35~ There 
is a critical set of parameters at which the different parts of the solution 
curve meet. There the convergence of both algorithms slows down 

0 45 

04 

035 

0.3 

0.25 

02 

0.15 

0.1 

0.05 . J  
-0.04 -0.035 -0.03 -0.025 -0.02 -0.015 -0,01 -0.005 

Fig. 4. For each computed solution of (4.9), ~ versus In (. The horn at the right end of the 
lower branch actually consists of two nearby solution branches which merge smoothly in a 
turning point at the right tip. Units are as in Fig. 2, for comparison. 
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dramatically. We have stopped the calculations in a small neighborhood of 
the critical parameters. In some graphs there is therefore a small gap. 

We have chosen a spherical container with radius equal to 50ro. This 
is of course much smaller than the typical 108ro that is relevant for 
experiments, but is roughly what can be handled numerically. We found 
that the interface structure depends very insensitively on its location in the 
container, which indicates that a realistically large domain will not alter the 
interface structure significantly. We have calculated a bifurcation sequence 
of (4.9) w.r.t. In ~ [see (6.2)] for 4rtfltrA/r~ Ibl = 150, which contains all 
radial decreasing stationary points of G[p] for these parameters. To get 
a better feeling for the parameters, define an "almost critical" flacr by 
setting left-hand side (6.16)= 1, i.e., ~Z2flacrtrA/[b[ ro3=80. Then our f l~  
1.4726 x fl .... i.e., the temperature is somewhat below the almost critical 
one above which there is a unique solution for each #. We have checked 
the quality of our estimate in Corollary 6.5 by performing a bifurcation run 
at fl' ~0.982fl . . . .  for which we did find a unique solution at each /~. 
However, the bifurcation diagram was quite steep in a certain range of/~, 
indicating the appearance of multiple solutions when fl is increased some- 
what beyond flacr" 

X 10  s 
1 

0.5 

04 -0.035 -0.03 -0.025 -002 -0.015 -0.01 

Fig. 5. The total mean compressibility K of all solutions as a function of In ~. Two 
singularities, where the compressibility jumps from - ~  to + oo, correspond to the points 
with infinite slope in the previous diagram. These we call "spinodal points." The branch of 
pure vapor solutions enters from the left and is strictly convex and positive, diverging to + 
at the right spinodal point. The branch of the liquid solutions is also strictly convex and 
positive. It starts at + oo at the left spinodal point, drops quickly to almost zero, and leaves 
the figure to the right. Between the spinodal points is a third solution branch which is not 
convex and not everywhere positive. It comes from - o 9  at the left spinodal point and goes 
to - ~  at the right spinodal point. It has three maxima and two minima. Clearly, the total 
compressibility takes on negative values on part of this branch. 
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We now discuss the grand ensemble first, starting with the thermo- 
dynamic functions (see Fig. 3-5). 

Figures 3 and 4 are analogs of Fig. 1 and 2, respectively, now for the 
hard-ball system with attractive interactions. Notice that the figures show 
data for 'all' computed solutions of (4.9), i.e., not only for those which 
make up the grand ensemble. Notice also that the inclusion of attractive 
interactions now yields nonconstant particle densities p(r). The quantities 
on the ordinate in Fig. 3 and 4 are mean quantities and do not give the 
local values at r. In particular, the dimensionless grand pressure/~ Ibl p is 
a mean quantity. The dimensionless mean density is f/= [A[ -~ SA q d3x" 
Similarly, Fig. 5 shows the total mean compressibility x for the computed 
solutions versus In ~. Notice that the compressibility is positive for the solu- 
tions which make up the grand ensemble. However, some solutions on the 
swallowtail structure have negative total compressibility. The points where 
x diverges are called spinodal points. 

We leave the thermodynamic functions and come to the particle 
densities. Figure 6 is a standard bifurcation diagram for (4.9). 

In Fig. 7 and 8 we show the (radial) density profiles of various solu- 
tions. Obviously, the solutions which make up the grand ensemble (part of 
Fig. 7) are "wall-modified" traditional (=uniform) bulk phases. The large 
solution suffers a stronger distortion from uniformity, but the effect is con- 
fined to a small neighborhood of the container wall. Spinodal solutions are 
shown in Fig. 8. One of them has a more pronounced vapor atmosphere as 
compared to the stable liquid solution at the phase transition. In addition, 
there are completely unstable solutions, not shown here. 

0.5 

0.45 

0,4 

0.35 

0.3 

025 

0.2 

015 

0.1 

~05 

0 ~ -0035 .0.03 .0.~25 0 ~  -0~,5 -0~,, -0005 

Fig. 6. The central dimensionless density r/(0) as a multiple-valued function of In (. Left of 
the region with three solutions is the uniqueness regime of the vapor density solutions. To the 
right of the three-solutions regime is a uniqueness regime for large-liquid-density solutions. 
The condensation phase transition is situated in the three-solution regime. 
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Fig. 7. The three solutions ~/{r) of (4.9) which exist simultaneously at the point of condensa- 
tion phase transition of the grand ensemble. The solutions are pointwise ordered; the small 
and the large ones are global minimizers of G for the same In ( and ft. The intermediate 
solution has proper interface structure, but sits on the swallowtail structure. It is grand 
canonically unstable. 

W e  c o m e  to the general ized canonica l  b i furcat ion sequence  and the 
canonica l  ensemble .  We  begin again with  a t h e r m o d y n a m i c  funct ion  and 
discuss  the free energy densi ty  as a funct ion  of  the m e a n  dens i ty  (see 
Fig. 9). [Strict ly  speaking ,  s ince NA shou ld  be an integer, our d iagram 
shou ld  be read as a s m o o t h  in terpo la t ion  of  the discrete F(N,/IAI).] 

O= 

0.3. = 

OA 

0.2. = 

O~ 

01~ = 

0.1 

0.0. = 

5 ~0 15 20 25 30 35 40 45 50 

Fig. 8. The two solutions q(r) which exist at the spinodal points. The low-density solution 
represents a strongly supersaturated vapor, the mainly high-density one represents a big liquid 
drop surrounded by a small vapor atmosphere. Both solutions mark the endpoints of the 
regions which contain local minimizers of G which are not global. These are presumably 
regions of metastability for the grand canonical contact conditions. 
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-0.0; 

-0.024 

-0.0~ 
0.01 002 0.03 0.04 0.05 0.06 007 

Fig. 9. For some computed solutions p of (4.9), the dimensionless free energy density func- 
tional Ibl flF[p]/]AI versus the mean density r 7 for fixed ft. Shown is only a small but interest- 
ing region of ~. The curve is not single-valued, but not really visible is the fact that it features 
a swallowtail structure. The branch which runs to the lower right contains proper interface 
solutions which merge smoothly with the liquid solutions way down to the lower right (out- 
side the range shown). The pointwise minimal branch defines the proper canonical free energy 
density. The minimal curve has a kink at which a new phase transition of first order occurs. 

The condensa t ion  phase t ransi t ion of the grand ensemble appears  as 
an almost  s traight  por t ion  of the free energy curve, running down to the 
right. Hard ly  visible here is the very interest ing feature of "wrong con- 
vexity" of the canonical  free energy in a certain range of F/ values. The 
corresponding states have negative total  compressibi l i ty,  as ant ic ipated 
from Fig. 5. They are nevertheless stable in the canonical  ensemble because 
no intrinsic number  fluctuations of the system occur, and no fluctuations 
of the domain  size. We call this "condi t ional ly  stable." The states with 
negative total  compressibi l i ty  are p roper  interface solut ions (see below). 
They are " jumped" in the grand ensemble by the t radi t ional  condensa t ion  
phase transit ion.  Very interest ing is also the new canonical  phase t ransi t ion 
of first order,  which is embedded  in the region of negative total  compressi-  
bility. All this is better  visible if we leave the the rmodynamic  functions and 
turn to the densities. 

Figure 10 is the analog  of Fig. 6. Now the bifurcat ion d iagram for 
(4.9) shows ~7(0) as mult iple-valued function of q. The canonical ly stable 
interfaces sit on the plateau. Not ice  that  on the interface plateau,  q(0) in 
fact increases slightly with decreasing 4. The decreasing drople t  volume 
means increasing curvature  of the interfacial region which is responsible for 
the cohesive effect of the forces due to V A. This compresses small droplets  
more than large ones and is in fact nicely seen in the diagram. 



1370 Kiessling and Percus 
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Fig. 10. Plot of r/(0) as a function of ~ for all solutions. For small and large r~, the solution 
curve is asymptotic to a straight diagonal line which would obtain for V^ =0 .  In an inter- 
mediate regime of ~, the cohesion due to V^ is too strong and forces the fluid to collapse to 
a liquid-vapor interface solution with high (liquid) density in the center and a vapor atmo- 
sphere. This is in the plateau regime. With increasing ~, the liquid drop simply grows in 
volume, almost without change of ~I(0), until the container is filled with liquid. Any further 
increase of ~ will now increase ~1(0). 

Clearly seen in Fig. 10 is a three-solutions regime, which produces the 
swallowtail structure in the free energy diagram. In this region the new 
canonical phase transition happens. The canonical transition is different 
from the grand transition. A quasiuniform vapor solution and a droplet 
solution coexist; see Fig. I1, which is the analog of Fig. 7. Finally, Fig. 12 
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Fig. 11. The three solutions tl(r) which exist for the parameter values of the canonical phase 
transition. The vapor density solution and the drop-type solution with bigger radius are 
global minimizers of the free energy functional. They exist in the proper canonical ensemble. 
The droplike solution with smaller radius is canonically unstable and not accessible in the 
proper canonical ensemble 
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Fig. 12. The two solutions r/(r) which exist at the turning points (upper left and lower right) 
of the bifurcation graph (Fig. 10), which now are spinodal points under canonical conlact 
conditions. The small one is clearly a supersaturated vapor. The large one is once more a 
droplet of liquid, surrounded by vapor. Both solutions represent the endpoints of domains 
where local minimizers of a canonical free energy funct~onaI (not constructed in this paper) 
exist which are not global. 

is the analog of Fig. 8 and shows spinodal solutions under the canonical 
contact  conditions. 

We do not display diagrams for the microcanonical ensemble, but 
refer to ref. 35. However, we notice that the three solutions at the canonical 
phase transition mean that for these values of NA/IAI and fl one also 
encounters the same phase transition point when we vary/3 and consider 
N.~/IAI fixed. Generically, this transition therefore implies that the Legendre 
unfolding ~F~ S(E) will produce a region of negative specific heat in 
the microcanonical ensemble. If the van der Waals - - r  - 6  interactions are 
replaced by gravitational ones, then indeed there are ranges of N ,  values 
where the diagram looks as expected here. la61 Regions with negative specific 
heat and negative compressibility are well known from simulations with 
finitely many particles in finite domains (see, e.g., ref. 29), and fall into the 
category "finite-size effects." An interesting aspect of our work is that such 
behavior does not vanish if one takes a cont inuum limit of infinitely many 
particles in a finite domain. We emphasize that it is such a limit which 
opens the possibility to speak properly of  such objects as " thermodynamic 
states," "phase transitions," and the like. 

We remark that a very brief speculation about  a connection of the 
classical condensation phase transition with a region of negative specific 
heat in the microcanonical ensemble appeared in ref. 37 (see their last 
remark on p. 419). However, these authors seemed to have the bulk limit 
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in mind, for which we know that no negative specific heat occurs. 
Nevertheless, our results show that their speculation came close. 

Clearly, our results suggest some tempting conclusions regarding 
experiments with a real system. In an ideal situation one has a spherical 
container with a fixed number of particles not subjected to external gravity. 
In this case one may speculate that, under nonwetting conditions for 
the container walls, in the neighborhood of the canonical transition the 
predominant fluctuations are between a liquid drop surrounded by a vapor 
atmosphere and a quasiuniform gas state. In particular, we conjecture that 
wave scattering experiments should be able to confirm the existence of a 
"smallest droplet size" in the canonical setup. 

For wetting conditions, the fluctuations may be rather between a gas 
phase and a vapor bubble immersed centrally in a liquidJ 3s~ Further away 
from the canonical transition, in the plateau regime of Fig. 10, the system 
should always aim at staying stably in an interface structure, with relatively 
small fluctuations. The liquid drop as a whole, however, may easily wander 
about, as the vapor does not exhibit strong restoring pressure gradients. 

7. ON V A N  DER W A A L S - M A X W E L L - O R N S T E I N  T H E O R Y  

We briefly show that we obtain the classical van der Waals-Maxwell-  
Ornstein theory from our finite-volume hydrostatic limit by performing 
a secondary singular scaling limit in which VA tends to a Dirac delta 
function. 

Although the variation in (4.5) can be taken for 0 a measure (since VA 
is continuous), we have seen from the Euler-Lagrange equation that the 
stationary points are continuous functions. For V A = o(r -3) at infinity, we 
define 

A = f VA(X) d3x < 0 
R3 

For any given 0 ~ C ~ we can now take the limit 

(7.1) 

VA(x  - y )  ---- A 6 ( x  - y )  (7.2) 

in our functional G[O]. In those cases where along with (7.2) the minimizer 
converges to a continuous function as well, we may exchange the limiting 
processes in the variational principle (4.5)-(4.7). This results in 
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We consider the case without external ~b. The continuous minimizers 
are now even constant in all of A. The infimum in (7.3) is taken for a 
subset of the solutions of 

p =  pR[I t - -  Ap, fl] + �89 2 (7.4) 

This is the grand canonical version of van der Waals' equation, with the 
modification of a more realistic local thermodynamic pressure (van der 
Waals took the equation of state of a one-dimensional system of hard rods, 
which becomes unrealistic in other dimensions at high densities). Equation 
(7.4), when extended to all values of constant p, produces the famous van 
der Waals loop with the artificial negative compressibility region. In our 
generalized grand canonical setup, such a negative compressibility loop 
shows up in the so-called swallowtail structure, similar to the one shown 
in Fig. 3. Clearly, this loop does not carry the continuous minimizers and 
is automatically avoided by (7.3). Also, this loop does not represent limit 
states of the hydrostatic/mean-field equation (4.9), but results from the 
additional restriction of the function space to the constant functions. No 
such restriction occurs in our setup; hence the reason for our swallowtail 
structure is in fact very different from the original van der Waals swallow- 
tail, which is displayed in his thesis, m 

We go even further and show that the original swallowtail structure of 
Fig. 3 shrinks to a point at the location of the kink in the limit (7.1), (7.2). 
To see this, notice that the infimum with respect to the constant densities 
is not necessarily the infimum with respect to the wider class of piecewise 
continuous functions. They do not belong to the function space C~ 0 for 
which our singular limit originally makes sense. However, since g2 ~~ may 
prefer nonuniform minimizing sequences under the right circumstances, we 
want to include the limit points of the minimizing sequence as real mini- 
mizers. We now have to extend the functional in (7.3) to this larger space. 
We do not present details, but notice that this actually does not present the 
right order of limits when one starts from our variational principle 
(4.5)-(4.7). However, it does give Ornstein's variational principle, in which 
the infimum of the functional in (7.3) is taken with respect to o e L  ~. We 

�9 t ~~ indeed all now notice that at ~ ca, 

with 

PLG ---- P L X,'IL -F PGZAc (7.5) 

AL W AG = A; AI n AG = f2~ (7.6) 

are global minimizers of Ornstein's variational principle, too. The proof is 
elementary and omitted. Clearly, the minimization problem is hopelessly 

822/78/5-6-12 
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degenerate, which is a result of the wrong order of limits. The degeneracy 
disappears if we take the correct order. This shows that the presence of the 
container walls allows the weak but finite-range tail interactions to intro- 
duce a separation of the bulk phases, i.e., we have a kind of symmetry 
breaking. In fact, a Schwartz symmetrization argument shows that a mini- 
mizer has to be radial symmetric and decreasing, excluding the possibility 
of a quasirandom distribution of the two density levels of the bulk system. 

_ , , ~ o )  the density jumps from the liquid density level Therefore, at # - ~ L G  

to the gas density level Pc 

+ to) ( 7 . 7 a )  PL = --0~, /2 

PG = --O~ -(2~~ (7.7b) 

but all intermediate mixtures coexist as well. 
For further discussions of the classical van der Waals-Maxwell-  

Ornstein theory see ref. 10. It should be remarked that in these and the 
works of Kac, Uhlenbeck, Hemmer, Lebowitz, and Penrose, the van tier 
Waals-MaxweU theory was obtained by taking first the standard infinite- 
volume thermodynamic limit, then second the scaling limit for the weak 
tail interaction such that the range of V A is sent to infinity and its strength 
goes to zero. In our finite-volume setup, the situation is clearly different. 

8. O P E N  P R O B L E M S  

We conclude with a brief list of open questions which should be 
answered in subsequent works. First of all, on the level of the hydrostatic/ 
mean-field limit, it is of interest to construct the limit rigorously for the 
canonical and the microcanonical ensemble. Its evaluation should confirm 
our numerical results about the regions of negative compressibility and 
negative specific heat. A further important point is, of course, the quan- 
titative comparison of the limit results with real or at least simulated data. 
In this respect, further numerical integration of our equations is of inter- 
est, ~35~ as done for gravitational rather than van der Waals interactions in 
ref. 36. A quantum version of our limit should be possible, too; cf. Lieb's ~39~ 
treatment of the uniform van der Waals-Maxwell theory. 

Somewhat more challenging is the question of fluctuations. Previous 
considerations revealed some ambiguities/~3"m but were also not rigorous. 
We expect that our setup allows us to construct a type of "central limit 
theorem" or its analog, and to clarify the nature of the equilibrium fluctua- 
tions around the hydrostatic/mean field states with liquid-vapor structure. 
Here an open question is whether the fluctuations are Gaussian or not. We 
hope to come back to this in a future work. 
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Finally, the interface dynamics should be addressed on a rigorous as 
well as numerical level. For recent progress in this respect see the preprint 
of De Masi el al. (see Note Added). 

N o t e  A d d e d .  When writing up our results, we received a preprint 
by A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution 
with Kac potentials. In their notable paper, Ising systems with finite-range 
potentials are studied with probabilistic methods in a related mean-field 
limit for lattice systems, performed after the bulk limit has been taken. We 
thank Anna De Masi for sending us their work prior to publication, and 
for some interesting discussions. In this context, we also learned of the 
work by M. Cassandro, E. Orlandi, and E. Presutti [Interfaces and typical 
Gibbs configurations for one-dimensional Kac potentials, Prob. Theory Rel. 
Fields 96:57-96 (1993)], which discusses the distribution of 1D Ising inter- 
faces in this limit. 
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